United States Patent

US009473396B1

(12) (10) Patent No.: US 9,473,396 B1
Nittala et al. 45) Date of Patent: Oct. 18, 2016
(54) SYSTEM FOR STEERING DATA PACKETS 2013/0272305 Al 10/2013 Lefebvre et al.
IN COMMUNICATION NETWORK 2014/0013324 Al 1/2014 Zhang et al.
2014/0301388 Al* 10/2014 Jagadish HO4L 67/2814
.) - . 370/389
70 Apphcams'lsftga Sb“:l‘“i?\?? g/[‘.".thy Nﬁtala’ 2014/0362857 Al 12/2014 Guichard et al.
AZ dera ﬁ (S)’J rlni\‘;[?s?Usj Balaii 2015/0263960 Al* 9/2015 Kasturico....... HO04L 47/22
epalll, dSan Jose, 5 balajl 370/230.1
Padnala, Hyderabad (IN) 2016/0149788 Al* 5/2016 Zhang HO04L 43/10
709/224
(72) Inventors: Satya Srinivasa Murthy Nittala,
Hyderabad (IN), Srinivasa R. OTHER PUBRLICATIONS
Addepalli, San Jose, MI (US); Balaji
Padnala, Hyderabad (IN) Dunbar et al.; “Layer 4-7 Service Chain problem statement”, IETF,
https://tools.ietf.org/html/draft-dunbar-14-17-sc-problem-statement-
(73) Assi FREESCALE SEMICONDUCTOR P & P
ssignee: J 00, Jul. 11, 2013.
INC., Austin, TX (US) N
* cited b i
(*) Notice: Subject to any disclaimer, the term of this clied by exafiifier
patent is extended or adjusted under 35
U.S.C. 154(b) by 55 days. Primary Examiner — Duc C Ho
(1) Appl. Now 14/704,988 (74) Attorney, Agent, or Firm — Charles E. Bergere
ppl. No.: ,
(22) Filed: May 6, 2015 67 ABSTRACT
(51) Int. CL A system for steering data packets in a communication
HO4L 1228 (2006.01) network that includes compute nodes having processors for
HO4L 12/721 (2013.01) executing appli.cation and service Yirtual machines (VMs),
HO4L 12/46 (2006.01) and traffic steering accelerators. A virtual local area network-
(52) US.Cl identifier (VLAN-ID) assignment module generates records
CPC ' HO4L 45/38 (2013.01); HO4L 12/4641 and associates the records with the service VMs. Each
"""""" R (2013.01) record includes an input VLAN-ID, an output VLAN-ID,
(58) Field of Classification Search ’ and a port number corresponding to one of the service VMs.
N A service-chaining module generates chaining rules associ-
Seoe?z lication file for complete search histo ated with n-Tuples. A traffic steering controller generates a
PP P R4 chain of the records based on the service chaining rules. The
(56) References Cited traffic steering accelerator then steers the data packets based

U.S. PATENT DOCUMENTS

8,284,664 Bl
8,743,885 B2

10/2012 Aybay et al.
6/2014 Khan et al.

on the input and output VLAN-IDs included in the data
packet.

20 Claims, 9 Drawing Sheets

100 Cloud orchestration controller
~a
108 \ 134 - wervicecham 136
3rd \ VLAN-ID assignment ervice-chaining |/~
memory module module
J 3 processor
1207 419t
122 Traffic steering 128

1%t application
virtual machine

controller

2 application II

150] virtual machine

138

108

14¢/ | Vvirtual machine

110 N 102

1% traffic steering

124
/ 1%t sarvice

146
144
" -
130f 2 service
142 | virtual machine [148

209 TSA

104 / 114~ |

[™~132

126 S| accelerator {TSA}

1% processor

112

1%t compute node

27 processor

116

27 compute node

US 9,473,396 B1

Sheet 1 of 9

Oct. 18, 2016

U.S. Patent

T°'Oid

apou a1ndwod pz

Alowaw pyz

N

—/ 911

dpou 2Indwod T

AJOLUIBW 5T ./
1T

10553204d 4 10553004d T
971
[A4* < (¥S1) 101e49]3008 Vs
e R SuI19915 J1JJRIY 1T
V0T 70T
Nyt | S U 011
8YT [aulyoew [enMiA | o r 0vT
SIS 7 L~ K 0€T auyoew jenliia \ k
B2INIDS T
| Iy A ! 15 /
- 9v1 - 144
801
] dulydeW [eNJIA - 0ST o aujyoRW [BNLIA \mmﬁ
uonesiidde g \ 13]j043U02 uopedjdde T \
] 8l 8ul991s o1yedy) I [4AS
81T
0tt
10553201d (€ L /
s|npow a|npow P Alowaw
- - - i€
9¢T Sl 8Buiureyos-aoinias wwawudisse gi-NVIA / eT p /
90T .
J3[JOJIUOD UOIIBIISSYDIO0 PNO|D 001

US 9,473,396 B1

Sheet 2 of 9

Oct. 18, 2016

U.S. Patent

0T

I

guleels

J2jjouod

el

00T

e

[40)) //

®HH\|_ Aowaw pug “

Vit
\

apou 31ndwod g

T10

apou aNdwod T

[4i14
10s$3304d pu g Vs réas /
VSL sul m U
i T AT AT AT
" “ | i “ “ [“ 1
i
25d ! aSd! 1esd 65d! 18Sd /Sd! 195d §Sd| 1¥Sd
ezT 0eT | | ;o 0 L
NN L i i
0ST—~ Ly v L v v
IANA q0=50-dIA 60=70O-dIA L0=EO-AIA S0=C¢0O-dIA
uonesijdde 4,7 e0=41-dIA 80=vI-AIA 90=¢tl-aIA 70=¢i-dlA
NA WA A IAA
B0IAIDS G MBS 7 BIINIBS € ADIAIDS
WA uoneoydde || 8rT J 9Pl ~ aah S/ 1421 ~
1°S pud A 9DIAIDS 185 T

Alowaur T |
~<CIT 011
1085300.4d T
(vsl) 1o3eta|ad0E
SU14891S J144e] 4T AN ozT
~T A
b "
€Sd | 1 TSd ' 1Sd
vZr _ 44
o e
T T
AN ! 8l
€0=TO-AIA (WA)
Z0=TI-QIA aulyoBW [BNLIA
WA uoieojdde g
BDINIBS T
A 2IIAIDS INIA Uoiiesjjdde
39S ;T 195 3T

US 9,473,396 B1

Sheet 3 of 9

Oct. 18, 2016

U.S. Patent

€ 'Old
8TE~ T9E~_ 25d
vze - 1oped 41 | 1apesH Jvin
8CE~ BLE~_ = TEE~_ 9LE~ qsd 8TE~ PLE~_ TEE~_ ZEEN esd
\ wpeddl | qo0TX0 [00T8X0 | JopesH IVIA \ 1wyped di | BOOTXO | 00T8XQ | J3pesH DVIA
(443 oze
87¢ ~_ 09¢ ~_ ce ~ 85¢ / 6Sd 143 ~ 9G¢ ~_ €€ ~ rse / 25d
\ 1vjoed d| 600TX0 | 0018%0 | i°pesH OV \ 1230ed d| 2001x0 | ooTsxo | 4epesH v
8T€ 91€
8CE~ CSE~ TEE~_ 0SE~ £5d 8CE~ BPE~_ TEE~_ OE~ 95d
\ 1yed di Z00TX0 | 00TI8X0 | ispesH DVIN \ 13ded d 900Tx0 | 0018%0 | J2pESH DY
ax oTe
8ZE~ OLE~_ TEE~_ BYE~ 5Sd 8ZE~ 998~ TEE~_ VIE~ Sd
J wpedd| | S00TX0 | 0OTSX0 | 12pedH DVIN \ peddl | ¥00TX0 | 00T8X0 | 4opeaH IVIA
01€ -
19yoed 1apeay 5omiau | 1epesH | 1 97 N ogs ~_ - oee cod
e N
X X Aejson
90€ \ .W — oawv ._, ol 7 wpeddi | €00TX0 | 00T8XQ | J9pedH DV
see/ wwe/ zee e ove —
#0€
8CE ~ bee ~ (433 ~ oce / 7Sd 8Z¢ / 9¢¢ / TSd
z0c | 1ded d| ZO0OTX0 | 00T8X0 | 1opesH DVIA 00 \ ped di | J9peaH OVIN

U.S. Patent Oct. 18, 2016 Sheet 4 of 9 US 9,473,396 B1

(START)

402
GENERATE RECORDS I/

y

404
ASSORCIATE THE RECORDS WITH SERVICE VMs
\1/ 406
RECEIVE THE RECORDS AT SERVICE-CHAINING MODULE
Ve 408
GENERATE SERVICE CHAINING RULES ASSOCIATED WITH n-TUPLES

v

Receive the plurality of service chaining rules and the corresponding plurality of | /~ 410
records at the traffic steering controller

v

Sequence the plurality of records based on the plurality of service chaining f412
rules for generating a plurality of chain of records

414
EXECUTE FIRST APPLICATION VM AND FIRST SET OF SERVICE VMs e
\1’ 416
RECEIVE FIRST DATA PACKET AT FIRST TRAFFIC STEERING ACCELERATOR I/

RECEIVE FIRST CHAIN OF RECORDS CORRESPONDING TO FIRST n-TUPLE AT |~ 418
FIRST TRAFFIC STEERING CONTROLLER

v

RETRIEVE AND ADD FIRST INPUT VLAN-ID OF FIRST RECORD OF FIRST CHAIN TO | ~ 420
THE FIRST DATA PACKET

J

422
ID DESTINATION USING FIRST INPUT VLAN-ID }f

IS DESTINATION A FIRST
SERVICE VM?

NO

426
| TRANSMIT FIRST DATA PACKET TO SECOND TRAFFIC STEERING ACCELERATOR If

STOP

FIG. 4

U.S. Patent Oct. 18, 2016 Sheet 5 of 9 US 9,473,396 B1

RECEIVE FIRST RECORD FROM VLAN-ID ASSIGNMENT MODULE AT THE FIRST | - 502
SERVICE VM

RECEIVE THE FIRST DATA PACKET FROM THE FIRST TRAFFIC STEERING | - 504
ACCELERATOR

REMOVE THE FIRST INPUT VLAN-ID L~ 506

| 508

PROCESS THE FIRST DATA PACKET WITH A FIRST SERVICE FUNCTION

ADD FIRST OUTPUT VLAN-ID L~ 510

TRANSMIT THE FIRST DATA PACKET TO THE FIRST TRAFFIC STEERING | 512
ACCELERATOR

O

FIG.5

U.S. Patent Oct. 18, 2016 Sheet 6 of 9 US 9,473,396 B1

O,

RECEIVE THE FIRST DATA PACKET 602

REMOVE FIRST OUTPUT VLAN-ID L~ 604

v

IDENTIFY FIRST RECORD USING FIRST OUTPUT VLAN-ID 606
608
YES IS 2ND RECORD
AVAILABLE FROM
THE FIRST CHAIN?
NO
 ~610
SEND THE FIRST DATA PACKET TO DESTINATION APPLICATION VM
| ~612
—> DETERMINE SECOND RECORD OF FIRST CHAIN

v

614
ADD SECOND INPUT VLAN-ID OF SECOND RECORD TO THE FIRST DATA PACKET |~

IDENTIFY DESTINATION USING SECOND INPUT VLAN-ID }f 616

S DESTINATION A 2ND
TRAFFIC STEERING
ACCELERATOR?

SEND FIRST DATA PACKET TO SECOND SERVICE VM L~ 620

STOP)

FIG. 6

U.S. Patent Oct. 18, 2016 Sheet 7 of 9 US 9,473,396 B1

©

RECEIVE FIRST DATA PACKET AT SECOND TRAFFIC |~ 702
STEERING ACCELERATOR

PROVIDE FIRST DATA PACKET TO TRAFFIC STEERING CONTROLLER L~ 704

RECEIVE FIRST CHAIN OF RECORDS FROM THE TRAFFIC STEERING CONTROLLER |~ 706

y

RETRIEVE SECOND RECORD FROM FIRST CHAIN BASED ON SECOND INPUT |~ 708
VLAN-ID OF THE FIRST DATA PACKET

IDENTIFY DESTINATION BASED ON SECOND INPUT VLAN-ID -~ 710

IS DESTINATION A
SECOND SERVICE VM?

NO

TRANSMIT THE FIRST DATA PACKET TO THIRD TRAFFIC STEERING ACCELERATOR [~ 714

(stop)

FIG.7

U.S. Patent Oct. 18, 2016 Sheet 8 of 9 US 9,473,396 B1

RECEIVE THE SECOND RECORD FROM THE VLAN-ID ASSIGNMENT MODULE AT | ~802
THE SECOND SERVICE VM

RECEIVE THE FIRST DATA PACKET FROM THE SECOND TRAFFIC STEERING |~ 804
ACCELERATOR

806
REMOVE THE SECOND INPUT VLAN-ID FROM THE FIRST DATA PACKET 4

PROCESS THE FIRST DATA PACKET WITH A SECOND SERVICE FUNCTION L~ 808

v

ADD SECOND OUTPUT VLAN-ID TO THE FIRST DATA PACKET L~ 810

TRANSMIT THE FISRT DATA PACKET TO THE SECOND TRAFFIC STEERING |~ 812
ACCELERATOR

©

FIG. 8

U.S. Patent Oct. 18, 2016

Sheet 9 of 9 US 9,473,396 B1

RECEIVE FIRST DATA PACKET AT THE SECOND TRAFFIC | ~902
STEERING ACCELERATOR

THIRD R

AVAILABLE FROM
FIRST CHAIN OF
RECORDS?

904

ECORD

NO

TRANSMIT THE FIRST DATA PACKET TO SECOND APPLICATION VM

|~ 906

(stop)

FIG

. 9A

RETRIEVE THIRD RECORD FROM FIRST CHAIN OF RECORDS BASED ON SECOND
OUTPUT VLAN-ID OF THE FIRST DATA PACKET

| 908

IDENTIFY DESTINATION US

ING THIRD INPUT VLAN-ID

|~ 910

(Stop)

FIG. 9B

US 9,473,396 B1

1

SYSTEM FOR STEERING DATA PACKETS
IN COMMUNICATION NETWORK

BACKGROUND

The present invention generally relates to communication
networks, and, more particularly, to a system for steering
data packets in a communication network.

A communication network typically includes multiple
digital systems such as gateways, switches, and access
points. In a cloud computing environment, multiple com-
puters are connected to each other and to servers via the
communication network to exchange data packets, e.g., the
World Wide Web (WWW) or the Internet. Generally, com-
pute nodes are used as servers to service the computers. The
compute nodes include processors for executing multiple
application and service virtual machines.

A virtual machine (VM) is an operating system that runs
on a processor of a compute node and uses the same
hardware resources as the compute node. Application VMs
executed on the compute nodes include user-defined appli-
cations and are based on a transmission control internet
protocol (TCP-IP) or a user datagram protocol (UDP), while
the service VMs executed on the compute node include
network services such as network security services such as
firewall (FW), distributed denial of security service (DDoS),
intrusion detection system (IDS), and web application fire-
wall (WAF).

A compute node running multiple application and service
VMs will receive data packets from one of the application
VMs being executed thereon or from another compute node
in the network. The data packets need to be serviced by a set
of network services defined by a network administrator. To
service a data packet with the set of network services, the
data packet must be steered through a set of network service
VMs corresponding to the set of network services. Steering
the data packets through the set of network service VMs
based on the traffic steering rules and the set of network
services assigned to the data packet is called traffic steering.

One known technique for steering data packets includes
utilization of a perimeter switch. The perimeter switch
includes two types of ports: input and output ports. Each of
the input and output ports includes node ports and transit
ports. A data packet thus is received at the node ports of the
perimeter switch. Based on a classification operation, the
data packet is assigned a service chain that identifies the
services and corresponding service VMs required for pro-
cessing the data packet. The node ports are used for deter-
mining the position or the service stage of the data packet in
the service chain and the next service in the service chain.
Based on the next service to process the data packet, a new
destination address of a next service VM is assigned to the
data packet. Subsequently, the data packet is transmitted on
a node port associated with the next service in the service
chain.

The total number of services required for servicing the
data packet is variable. Further, to identify the node ports of
the service VM for additional services that may be added
for scalability, the hardware in the compute nodes must be
upgraded. Thus, the utilization of ports to detect the position
of the data packet in the service chain does not provide a
scalable solution as the use of ports to determine the position
of the data packet in the service chain will include multiple
ports, eventually requiring a hardware upgrade for each
compute node.

Another technique for steering data packets involves the
introduction of new network protocols in the packet header

20

25

30

40

45

50

55

65

2

to identify the next service VM for processing the data
packet. This too will involve upgrading the software for
identifying the protocol information in the data packet.
Therefore, it would be advantageous to have a system and
method for steering data packets that is scalable and doesn’t
require hardware or software upgrades at the compute nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description of the preferred
embodiments of the present invention will be better under-
stood when read in conjunction with the appended drawings.
The present invention is illustrated by way of example, and
not limited by the accompanying figures, in which like
references indicate similar elements.

FIG. 1 is a schematic block diagram of a system for
steering data packets in a communication network in accor-
dance with an embodiment of the present invention;

FIG. 2 is a schematic block diagram of the system of FIG.
1 for steering a data packet from a first compute node to a
second compute node in accordance with an embodiment of
the present invention;

FIG. 3 is a diagram illustrating first through twelfth packet
specifications and an overlay tunnel packet specification of
a first data packet in accordance with an embodiment of the
present invention;

FIG. 4 is a flow chart illustrating a method for steering
data packets in a communication network in accordance
with an embodiment of the present invention;

FIG. 5 is a flow chart illustrating a method for processing
a data packet 2 by a first service VM in accordance with an
embodiment of the present invention;

FIG. 6 is a flow chart illustrating a method for processing
a data packet by a first traffic steering accelerator in accor-
dance with an embodiment of the present invention;

FIG. 7 is a flow chart illustrating a method for determin-
ing a destination for a data packet based on an input
VLAN-ID in accordance with an embodiment of the present
invention;

FIG. 8 is a flow chart illustrating a method of processing
a data packet by a second service VM in accordance with an
embodiment of the present invention; and

FIGS. 9A and 9B are a flow chart illustrating a method of
determining a destination for a data packet by a traffic
steering accelerator in accordance with an embodiment of
the present invention.

DETAILED DESCRIPTION

The detailed description of the appended drawings is
intended as a description of the currently preferred embodi-
ments of the present invention, and is not intended to
represent the only form in which the present invention may
be practiced. It is to be understood that the same or equiva-
lent functions may be accomplished by different embodi-
ments that are intended to be encompassed within the spirit
and scope of the present invention.

In an embodiment of the present invention, a system for
steering a plurality of data packets in a communication
network is provided. The system includes a plurality of
compute nodes having a corresponding plurality of proces-
sors for executing a plurality of application and service VMs
and a corresponding plurality of traffic steering accelerators.
A first one of the compute nodes includes a first processor
configured for executing a first one of the application VMs
and a first set of the service VMs, a first traffic steering
accelerator, a virtual local area network-identifier (VLAN-

US 9,473,396 B1

3

ID) assignment module, a service-chaining module, and a
traffic steering controller. The first application VM outputs a
first data packet and the first traffic steering accelerator
receives the first data packet. The VLAN-ID assignment
module generates a plurality of records and associates these
records with the service VMs. Each of the records includes
a VLAN-ID set and a port number of a corresponding one
of the service VMs. The VLAN-ID set includes input and
output VLAN-IDs of the corresponding service VM. The
service-chaining module receives the records and generates
a plurality of service chaining rules associated with a
plurality of n-Tuples configured for the application VMs.
The traffic steering controller receives the first data packet
and the service chaining rules and the corresponding
records, sequences the records based on the service chaining
rules for generating a plurality of chained records, and
outputs a first chain of the chained records corresponding to
a first one of the n-Tuples based on the first data packet to
the first traffic steering accelerator. The first traffic steering
accelerator receives the first chained records, retrieves a first
record of the first chained records, retrieves a first input
VLAN-ID of the first record, adds the first input VLAN-ID
to the first data packet, and transmits the first data packet to
at least one of a first one of the service VMs and a second
one of the traffic steering accelerators based on the first input
VLAN-ID.

In another embodiment of the present invention, a method
for steering data packets in a communication network is
provided. The communication network includes a VLAN-ID
assignment module, a service-chaining module, a traffic
steering controller, and a plurality of compute nodes having
a corresponding plurality of processors for executing a
plurality of application and service VMs and a correspond-
ing plurality of traffic steering accelerators. A first one of the
compute nodes includes a first one of the processors and a
first one of the traffic steering accelerators. The method
includes generating a plurality of records by the VLAN-ID
assignment module, where each of the records includes a
VLAN-ID set and a port number of a corresponding service
VM of the plurality of service VMs, and wherein the
VLAN-ID set includes input and output VLLAN-IDs of the
corresponding service VM. The records are associated with
the service VMs. The service chaining module receives the
records and generates a plurality of service chaining rules
associated with a plurality of n-Tuples configured for the
application VMs. The traffic steering controller receives the
service chaining rules and the corresponding records and
sequences the records based on the service chaining rules for
generating a plurality of chained records. The first processor
executes a first one of the application VMs and a first set of
the service VMs, where the first application VM outputs a
first one of the data packets. The first traffic steering accel-
erator receives the first data packet and provides it to the
traffic steering controller. The first traffic steering controller
provides a first chain of the chained records corresponding
to a first one of the n-Tuples based on the first data packet
to the first traffic steering accelerator. The first traffic steering
accelerator retrieves a first record of the first chained
records, retrieves a first input VLAN-ID of the first record,
adds the first input VLAN-ID to the first data packet, and
transmits the first data packet to at least one of a first service
VM of the first set of service VMs and a second one of the
traffic steering accelerators based on the first input VL AN-
D.

Various embodiments of the present invention provide a
system for steering data packets in a communication net-
work. The system includes a plurality of compute nodes, a

10

15

20

25

30

35

40

45

50

55

60

65

4

VLAN-ID assignment module, a service-chaining module,
and a traffic steering controller. The compute nodes execute
a application and service VMs and a corresponding plurality
of traffic steering accelerators. The VLAN-ID assignment
module generates records and associates the records with the
service VMs. Each record includes a VLAN-ID set and a
port number of a corresponding service VM. The VLAN-ID
set includes input and output VLLAN-IDs of the correspond-
ing service VM. The service-chaining module generates
service chaining rules associated with a plurality of n-Tuples
configured for the application VMs based on the records.
The traffic steering controller sequences the records based
on the service chaining rules for generating a plurality of
chained records.

A first one of the compute nodes executes a first appli-
cation VM, a first set of service VMs, and a first traffic
steering accelerator. The first application VM outputs a first
one of the data packets. The traffic steering controller
outputs a first chain of the chained records corresponding to
a first one of the n-Tuples based on the first data packet to
the first traffic steering accelerator. The first traffic steering
accelerator receives the first data packet and the first chain
of records, retrieves a first record of the first chain, retrieves
a first input VLAN-ID of the first record, adds the first input
VLAN-ID to the first data packet, and transmits the first data
packet to at least one of a first one of the service VMs and
a second one of the traffic steering accelerator based on the
first input VLAN-ID.

Thus, the data packets are steered in the communication
network based on the input and output VLAN-IDs in the
data packet. One of the VLAN-IDs is associated with the
first data packet, thereby enabling identification of the first
service VM for processing the first data packet. Thus,
hardware or software implemented in the compute nodes
does not need to be upgraded. Furthermore, since the
servicing of the data packets is evenly distributed across the
communication network based on the instances generated by
the service VMs, the processing load due to steering of the
data packets is reduced.

Referring now to FIG. 1, a schematic block diagram of a
system 100 for steering data packets in a communication
network (not shown) in accordance with an embodiment of
the present invention is shown. The system 100 is included
in a cloud computing environment for providing various
cloud-based solutions such as infrastructure as a service
(IaaS), platform as a service (PaaS), and software as a
service (SaaS). The system 100 includes first and second
compute nodes 102 and 104, a cloud orchestration controller
106, and a traffic steering controller 108.

The first compute node 102 includes a first processor 110
and a first memory 112. The second compute node 104
includes a second processor 114 and a second memory 116.
The cloud orchestration controller 106 includes a third
processor 118 and a third memory 120. The first processor
110 executes a first set of application VMs 122, a first set of
service VMs 124, and a first traffic steering accelerator 126.
The second processor 114 executes a second set of applica-
tion VMs 128, a second set of service VMs 130, and a
second traffic steering accelerator 132. The third processor
118 executes a virtual local area network-identifier (VLAN-
1D) assignment module 134 and a service-chaining module
136.

The first set of application VMs 122 includes a first
application VM 138. The first set of service VMs 124
includes a first service VM 140. The second set of service
VMs 130 includes second through fifth service VMs 142-
148. The second set of application VMs 128 includes a

US 9,473,396 B1

5

second application VM 150. The system 100 further
includes multiple compute nodes (not shown) that include
multiple processors (not shown) and multiple traffic steering
accelerators (not shown). The multiple processors execute
multiple application and service VMs (not shown).

The first and second compute nodes 102 and 104 may be
desktop or server machines with high-end processors and a
hard disk. They are employed in data centers and are utilized
for executing multiple VMs. The multiple VMs include the
first and second sets of application VMs 122 and 128 and the
first and second sets of service VMs 124 and 130. The first
and second compute nodes 102 and 104 include a hypervisor
(not shown) that allows the multiple VMs to share the first
and second processors 110 and 114, respectively, thereby
sharing a single hardware for executing the multiple VMs. In
one embodiment, the hypervisor is a kernel-based VM
(KVM). The compute nodes including the first and second
compute nodes 102 and 104 communicate with each other
by utilizing network virtualization technologies. The data
packets are transmitted between the compute nodes by way
of an overlay network tunnel based on a protocol standard.
Examples of overlay network tunnels include a virtual
extensible local area network (VXLAN), a network virtual-
ization using generic routing encapsulation (NVGRE), a
location and identity separation protocol (LISP), and trans-
port interconnection for lots of links (TRILL).

The cloud orchestration controller 106 acts as an inter-
connector in the cloud computing environment for managing
and coordinating multiple user-defined applications and
network service functions corresponding to the multiple
VMs executed by the compute nodes. In one embodiment,
the cloud orchestration controller 106 is an OpenStack
controller.

The first and second processors 110 and 114 execute the
multiple VMs. They act as a common hardware resource for
multiple operating systems, i.e., the multiple VMs that are
being launched and executed by the first and second pro-
cessors 110 and 114. In one embodiment, the first and second
processors 110 and 114 are at least one of single-core
processors and multi-core processors. The first and second
memories 112 and 116 are connected to the first and second
processors 110 and 114, respectively. In one embodiment,
the first and second memories 112 and 116 are cache
memories and random access memories (RAMs).

The third processor 118 further executes software mod-
ules that associate and store the identification information of
the multiple VMs as well as provide service chaining rules
associated with the data packets to the traffic steering
controller 108. The third processor 118 includes at least one
of a single and multi-core processor. The third memory 120
is connected to the third processor 118 and includes at least
one of a cache memory and a RAM. In another embodiment
of the present invention, the first, second, and third memo-
ries 112, 116, and 120 may be internal memories of the first,
second, and third processors 110, 114, and 118, respectively.

The first and second sets of application VMs 122 and 128
include multiple user defined applications based on a trans-
mission control protocol (TCP) and a user datagram protocol
(UDP). The first and second sets of service VMs 124 and
130 include the multiple service VMs corresponding to the
network service functions for processing a data packet.
Examples of the network service functions include firewall
(FW), distributed denial of security service (DDoS), intru-
sion detection system (IDS), and web application firewall
(WAF). The count of application and service VMs that can
be hosted by each compute node depends on the memory
and computing power of the compute nodes. The application

10

15

20

25

30

35

40

45

50

55

60

65

6

and service VMs are elastic in nature. Based on the pro-
cessing requirement of the data packets and for balancing
the processing load of the data packets, new VMs are
launched on the multiple compute nodes.

The third processor 118 executes the VLAN-ID assign-
ment module 134 for generating multiple records and asso-
ciating the multiple records with the multiple service VMs.
Each record of the multiple records includes a VL AN-ID set
and a port number of a corresponding service VM of the
multiple service VMs. The VLLAN-ID set includes input and
output VLAN-IDs of the corresponding service VM. A first
set of records of the multiple records is associated with the
first set of service VMs 124 by the VLAN-ID assignment
module 134. Thus, the first set of records corresponds to the
first set of service VMs 124 that are executed by the first
processor 110. As a result, a first record of the first set of
records corresponds to the first service VM 140. The first
record includes a first input VLAN-ID, a first output VL AN-
1D, and a first port number. Subsequently, a second set of
records is associated with the second set of service VMs 130.
As a result, a second record of the second set of records
corresponds to the second service VM 142. The second
record includes a second input VLAN-ID, a second output
VLAN-ID, and a second port number. The VLAN-ID
assignment module 134 further stores a mapping between
multiple port numbers corresponding to the multiple service
VMs, corresponding multiple virtual networks, and corre-
sponding multiple VLAN-ID sets in the third memory 120.

Table A represents the mapping between service VMs and
the corresponding virtual networks and the VLAN-ID sets.

TABLE A
Virtual VLAN-ID set
Service VM (VM) Network assigned to the
name/ID (VN) service VM
Service VM-1 VN-1 VLAN-ID-IN = 2
VLAN-ID-OUT = 3
Service VM-2 VN-1 VLAN-ID-IN = 4
VLAN-ID-OUT = 5
Service VM-3 VN-2 VLAN-ID-IN = 2
VLAN-ID-OUT = 3
Service VM-4 VN-1 VLAN-ID-IN = 6

VLAN-ID-OUT =7

The service VMs include the multiple sets of service VMs
that are executed by the multiple processors. Each virtual
network identifier (VNI) is used to represent a correspond-
ing virtual network. The corresponding application and
service VMs in the first set of application and service VMs
122 and 124 and the second set of application and service
VMs 128 and 130, respectively, are in communication with
the first and second traffic steering accelerators 126 and 132,
respectively, on a specific port. Each specific port represents
the corresponding virtual network. VXLAN overlay net-
work protocol is used to achieve virtualization with each
VNI representing a virtual network. Thus, each compute
node includes a unicast network port that is created for each
overlay protocol such as VXLAN and based on the number
of compute nodes, broadcast ports are created in the com-
pute nodes. Furthermore, to send the data packets to remote
compute nodes, network ports associated with a layer 2 (L2)
virtual network are utilized. As shown table A, the input and
output VLAN-IDs associated with a service VM-1 and a
service VM-3 can be same (VLAN-ID-IN=2 and VL AN-
ID-OUT=3) as the service VMs 1 and 3 are in different
virtual networks (VN-1 and VN-2).

US 9,473,396 B1

7

The first processor 110 executes a network service con-
figuration module (not shown) for configuring VL AN inter-
faces of the first set of service VMs 124 based on the
corresponding first set of records. The first record corre-
sponding to the first service VM 140 is included in a
VLAN-ID file and is accessed from a pre-defined path
‘/fileinject’ of the first service VM 140. The VLAN-ID file
is injected by the VLAN-ID assignment module 134 in the
first service VM 140. Utilizing the input and output VLAN-
IDs from the first record, the network service configuration
module thus configures the VLLAN interfaces for ingress and
egress of the data packets to and from the first service VM
140, respectively. In an example, the network service con-
figuration module configures Eth 1.4 and Eth 1.5 virtual
interfaces for ingress and egress data packets, respectively.
Subsequently, the VLAN-ID assignment module 134 injects
multiple VLAN-ID files including the corresponding mul-
tiple VLAN-ID sets in the multiple service VMs.

The third processor 118 executes the service-chaining
module 136 for receiving the multiple records and generat-
ing multiple service chaining rules associated with multiple
n-Tuples configured for the multiple application VMs. Each
n-Tuple of the multiple n-Tuples includes a 5-Tuple that
includes a source internet protocol (IP) address, a destina-
tion IP address, a source port number, a destination port
number, and a protocol information of an application VM
that outputs the data packet and an application VM that
receives the data packet processed with a set of network
services.

The first and second traffic steering accelerators 126 and
132 are OpenFlow switches or software switches. The first
and second traffic steering accelerators 126 and 132 steer the
data packets to the first and second sets of service VMs 124
and 130, respectively, based on the packet fields. In another
embodiment of the present invention, the first and second
traffic steering accelerators 126 and 132 are hardware accel-
erators such as cryptographic accelerators and co-proces-
SOIS.

The first and second traffic steering accelerators 126 and
132 store six OpenFlow (OF) tables, i.e., first through sixth
tables (not shown), in the first and second memories 112 and
116, respectively. The first and second traffic steering accel-
erators 126 and 132 utilize the first table to classify and
direct the data packets received from the first and second sets
of service VMs 124 and 130. The first and second traffic
steering accelerators 126 and 132 utilize the second table to
determine when the data packets have to be sent to the traffic
steering controller 108 for receiving corresponding chain of
records and to determine the service VMs based on the
VLAN-IDs embedded in the data packets. The first and
second traffic steering accelerators 126 and 132 utilize the
third table to determine the VMs of the first and second sets
of'service VMs 124 and 130, respectively, for processing the
data packets.

The first and second traffic steering accelerators 126 and
132 utilize the fourth table to identify a destination VM for
the data packets that includes VL AN-IDs in the data packets.
The first and second traffic steering accelerators 126 and 132
utilize the fifth table to determine a destination for the data
packets received from an application and service VM in the
first set of application and service VMs 122 and 124 and the
second set of application and service VMs 128 and 130,
respectively, to another application and service VM in the
first and second compute nodes 102 and 104 and the multiple
compute nodes. The first and second traffic steering accel-
erators 126 and 132 utilize the sixth table to determine a
destination for the data packets received from the second

25

30

40

45

55

8

and first traffic steering accelerators 132 and 126, respec-
tively and other traffic steering accelerators to the first set of
application and service VMs 122 and 124 and the second set
of application and service VMs 128 and 130, respectively.

The traffic steering controller 108 is a centrally located
controller in the cloud computing environment and is con-
figured with the service chaining rules. OpenStack hosts a
dashboard horizon user interface module (not shown) that
allows a user or a network administrator to configure the
service chaining rules in the traffic steering controller 108. In
an example, the traffic steering controller 108 is an Open-
Flow controller. In another example, the traffic steering
controller 108 is a software module that is executed by a
fourth processor (not shown).

The traffic steering controller 108 is connected to the
multiple traffic steering accelerators and the third processor
118 for receiving the data packets and the multiple service
chaining rules and the corresponding multiple records,
respectively. The traffic steering controller 108 sequences
the multiple records based on the multiple service chaining
rules for generating multiple chain of records.

In an example, the first application VM 138 outputs a first
data packet. When the first traffic steering accelerator 126
receives the first data packet from the first application VM
138, the first traffic steering accelerator 126 transmits the
first data packet to the traffic steering controller 108. The
traffic steering controller 108 receives the first data packet
and identifies a first n-Tuple corresponding to the first data
packet. On identifying the first n-Tuple, the traffic steering
controller 108 retrieves a first chain of records based on the
first n-Tuple and outputs the first chain of records to the first
traffic steering accelerator 126.

On receiving the first chain of records, the first traffic
steering accelerator 126 retrieves the first record of the first
chain. It further retrieves the first input VLAN-ID of the first
record. On retrieving the first input VLAN-ID, the first
traffic steering accelerator 126 adds the first input VLAN-ID
to the first data packet. Based on the first input VLAN-ID,
the first traffic steering accelerator 126 transmits the first
data packet to at least one of a service VM of the first set of
service VMs 124 and a traffic steering accelerator of the
multiple traffic steering accelerators.

Since the first input VLAN-ID corresponds to the first
service VM 140, the first traffic steering accelerator 126
transmits the first data packet having the first input VL AN-
ID to the first service VM 140 through a virtual port that
corresponds to the first port number. On receiving the first
data packet from the first traffic steering accelerator 126, the
first service VM 140 removes the first input VLAN-ID
added to the first data packet. The first data packet is then
processed with a first service function. In one embodiment,
the first service VM 140 is configured for servicing the data
packets with firewall services. Thus, the first service func-
tion corresponds to the firewall servicing function of the first
service VM 140. After servicing the first data packet with the
first service function, the first service VM 140 adds the first
output VLAN-ID to the first data packet. The first data
packet is transmitted on the virtual port to the first traffic
steering accelerator 126.

The first traffic steering accelerator 126 receives the first
data packet from the first service VM 140. The first data
packet is now processed with the first service function and
has the associated first output VLAN-ID. The first traffic
steering accelerator 126 removes the first output VLAN-ID
and based on the first output VLAN-ID identifies the first
record in the first chain of records. The first traffic steering
accelerator 126 checks to determine if the first chain of

US 9,473,396 B1

9

records includes the second record. When the first traffic
steering accelerator 126 determines that the second record is
included in the first chain of records, it retrieves the second
record that is subsequent to the first record from the first
chain of records. The first traffic steering accelerator 126
retrieves the second input VLAN-ID of the second record
and adds the second input VLAN-ID to the first data packet.
Since the second input VLAN-ID corresponds to the input
VLAN-ID of the second service VM 142, the first traffic
steering accelerator 126 transmits the first data packet to the
second traffic steering accelerator 132 in the second compute
node 104 by way of an overlay network tunnel (not shown).

The second traffic steering accelerator 132 receives the
first data packet from the first traffic steering accelerator 126
and provides the first data packet to the traffic steering
controller 108. The traffic steering controller 108 configures
the first chain of records for the first data packet in the
second traffic steering accelerator 132. The second traffic
steering accelerator 132 retrieves the second record from the
first chain of records based on the second input VLAN-ID of
the first data packet. On identifying a match between the
second input VLAN-ID of the second record and the second
input VLAN-ID of the first data packet, the second traffic
steering accelerator 132 transmits the first data packet to at
least one of a service VM of the second set of service VMs
130.

Since the second input VLAN-ID corresponds to the
second service VM 142, the second traffic steering accel-
erator 132 thus transmits the first data packet to the second
service VM 142. The second service VM 142 receives the
first data packet from the second traffic steering accelerator
132, removes the second input VLAN-ID added to the first
data packet, processes the first data packet with a second
service function, adds the second output VLAN-ID to the
first data packet, and transmits the first data packet to the
second traffic steering accelerator 132.

The second traffic steering accelerator 132 further
receives the first data packet from the second service VM
142. The second traffic steering accelerator 132 removes the
second output VLAN-ID from the first data packet. The
second traffic steering accelerator 132 identifies the second
record from the first chain of records based on the second
output VLAN-ID. The second traffic steering accelerator
132 checks for any more records associated in the first chain
of records. If a third record is included in the first chain of
records, the second traffic steering accelerator 132 retrieves
a third input VLAN-ID from the third record, adds the third
input VLAN-ID to the first data packet, and transmits the
first data packet to at least one of a service VM of the second
set of service VMs 130 and another traffic steering accel-
erator (not shown) of the multiple traffic steering accelera-
tors. If a third record is not included in the first chain of
records, the second traffic steering accelerator 132 transmits
the first data packet to at least one of an application VM of
the second set of application VMs 128 without applying
further network services.

Referring now to FIG. 2, a schematic block diagram of the
system 100 for steering the first data packet from the first
application VM 138 being executed on the first compute
node 102 to the second application VM 150 being executed
on the second compute node 104 is shown. In an example,
the first data packet needs to be serviced by the first, third,
and fourth service VMs 140, 144, and 146 prior to reception
by the second application VM 150. In FIG. 2, the system 100
of FIG. 1 further includes an overlay network tunnel 202.

FIG. 2 will be explained in conjunction with FIG. 3,
which illustrates first through third packet specifications

10

15

20

25

30

35

40

45

50

55

60

65

10
(PS1-PS3) 300-304, a first overlay tunnel packet specifica-
tion (OT1) 306, and fourth through twelfth packet specifi-
cations (PS4-PSc) 308-324 of the first data packet.

The VLAN-ID assignment module 134 associates the first
set of records with the first set of service VMs 124. The first
record in the first set of records includes the first input
VLAN-ID, the first output VLAN-ID, and the first port
number. In the example, the first input VLAN-ID (also
referred to as “VID-117) has a value 02 and the first output
VLAN-ID (also referred to as “VID-O1”) has a value 03.
Thus, the first service VM 140 is identified using the first
input VLAN-ID value as 02 and the first output VLAN-ID
value as 03. Subsequently, the VLAN-ID assignment mod-
ule 134 associates the second set of records with the second
set of service VMs 130. The second set of records includes
the second record, the third record, a fourth record, and a
fifth record. The second record in the second set of records
includes the second input VLAN-ID (also referred to as
“VID-12"=04), the second output VLAN-ID (also referred to
as “VID-027=05) and the second port number. Thus, the
second service VM 142 is identified using the second input
VLAN-ID value as 04 and the second output VLAN-ID
value as 05. The third record includes a third input VL AN-
1D (also referred to as “VID-137=06), a third output VLAN-
ID (also referred to as “VID-037=07), and a third port
number. The fourth record includes a fourth input VLAN-ID
(also referred to as “VID-14"=08), a fourth output VLAN-ID
(also referred to as “VID-04"=09), and a fourth port num-
ber. The fifth record includes a fifth input VLAN-ID (also
referred to as “VID-157=0a), a fifth output VLAN-ID (also
referred to as “VID-O5"=0b), and a fifth port number.
Therefore, the third, fourth, and fifth service VMs 144, 146,
and 148 are identified using the third input and output
VLAN-ID values as 06 and 07, the fourth input and output
VLAN-ID values as 08 and 09, and the fifth input and output
VLAN-ID values as 10 and 11, respectively.

The first application VM 138 outputs the first data packet
having the first packet specification (PS1) 300. The first data
packet having the first packet specification (PS1) 300
includes a media access control (MAC) header 326 and an
internet protocol (IP) packet 328. The IP packet 328 is the
first data packet and the MAC header 326 includes a source
MAC address and a destination MAC address. The source
MAC address includes a MAC address of the first applica-
tion VM 138 and the destination MAC address includes a
MAC address of the first traffic steering accelerator 126. The
first traffic steering accelerator 126 receives the first data
packet having the first packet specification (PS1) 300. Since
the first traffic steering accelerator 126 does not have any
service chaining rules configured for the IP packet 328, the
first traffic steering accelerator 126 transmits the IP packet
328 to the traffic steering controller 108. The traffic steering
controller 108 identifies the first chain of records associated
with the first n-tuple and outputs the first chain of records to
the first traffic steering accelerator 126. In the example, the
first chain of records includes the first record, the third
record, and the fourth record. The first traffic steering
accelerator 126 receives the first chain of records and
retrieves the first record of the first chain of records. The first
traffic steering accelerator 126 further retrieves the first input
VLAN-ID (02) of the first record, adds the first input
VLAN-ID (02) to the first data packet, and generates the first
data packet having the second packet specification (PS2)
302. Since the first record is associated with the first service
VM 140, the first traffic steering accelerator 126 transmits
the first data packet having the second packet specification

US 9,473,396 B1

11

(PS2) 302 to the first service VM 140 utilizing the virtual
port which corresponds to the first port number.

The first data packet having the second packet specifica-
tion (PS2) 302 includes a MAC header 330, the VLAN
protocol identifier field 332, a VLAN-ID field 334, and the
1P packet 328. The MAC header 330 includes a source MAC
address and a destination MAC address. The source MAC
address is the MAC address of the first traffic steering
accelerator 126 and the destination MAC address is a MAC
address of the first service VM 140. The VL AN protocol
identifier field 332 is given by 0x8100 that conforms to the
IEEE 802.1Q standard. The VL AN-ID field 334 includes the
first input VLAN ID (0x1002).

The first service VM 140 receives the first data packet
having the second packet specification (PS2) 302, removes
the first input VLAN-ID (02) from the second packet speci-
fication (PS2) 302, processes the IP packet 328 with the first
service function, adds the first output VLAN-ID (03) to the
first data packet, and generates the first data packet having
the third packet specification (PS3) 304. The first data packet
having the third packet specification (PS3) 304 includes a
MAC header 336, the VLLAN protocol identifier field 332, a
VLAN-ID field 338, and the IP packet 328. The MAC
header 336 includes a source MAC address and a destination
MAC address. The source MAC address is the MAC address
of'the first service VM 140 and the destination MAC address
is the MAC address of the first traffic steering accelerator
126. The VL AN-ID field 338 includes the first output VLAN
ID (0x1003). The first service VM 140 transmits the first
data packet having the third packet specification (PS3) 304
to the first traffic steering accelerator 126.

The first traffic steering accelerator 126 receives the first
data packet having the third packet specification (PS3) 304
and removes the first output VLAN-ID (03) from the first
data packet having the third packet specification (PS3) 304.
The first traffic steering accelerator 126 identifies the first
record of the first chain of records based on the first output
VLAN-ID (03) and checks to determine if a next record is
included in the first chain of records that is subsequent to the
first record. When the subsequent record is identified as the
third record, the first traffic steering accelerator 126 further
retrieves the third input VLAN-ID (06) of the third record
and adds the third input VLAN-ID (06) to the first data
packet. Since the third record is associated with the third
service VM 144, the first traffic steering accelerator 126
transmits the first data packet utilizing the overlay network
tunnel 202. To transmit the first data packet on the overlay
network tunnel 202, the first traffic steering accelerator 126
further adds an overlay network header to the first data
packet, thereby generating the first data packet having the
first overlay tunnel packet specification (OT1) 308. The first
data packet having the first overlay tunnel packet specifica-
tion (OT1) 308 includes a MAC header 340, the overlay
network header 342, the VL AN protocol identifier field 332,
a VLAN-ID field 344, and the IP packet 328. The MAC
header 340 includes a source MAC address and a destination
MAC address. The source MAC address is the MAC address
of'the first traffic steering accelerator 126 and the destination
MAC address is a MAC address of the second traffic steering
accelerator 132. The VLAN-ID field 344 includes the third
input VLAN ID (0x1006). The overlay network header 342
includes the protocol specification based on the protocol that
is used for transmitting the first data packet having the first
overlay tunnel packet specification (OT1) 308 through the
overlay network tunnel 202.

The second traffic steering accelerator 132 receives the
first data packet having the first overlay tunnel packet

10

15

20

25

30

35

40

45

50

55

60

65

12

specification (OT1) 308 from the first traffic steering accel-
erator 126. Since the second traffic steering accelerator 132
does not have any chain of records associated with the IP
packet 328, the second traffic steering accelerator 132 trans-
mits the first data packet to the traffic steering controller 108.
The traffic steering controller 108 programs the first chain of
records in the second traffic steering accelerator 132. The
second traffic steering accelerator 132 retrieves the third
record from the first chain of records based on the third input
VLAN-ID (06) of the first data packet. Since the third record
corresponds to the third service VM 144, the second traffic
steering accelerator 132 generates the first data packet
having the sixth packet specification (PS6) 312.

The first data packet having the sixth packet specification
(PS6) 312 includes a MAC header 346, the VLLAN protocol
identifier field 332, a VL AN-ID field 348, and the IP packet
328. The MAC header 346 includes a source MAC address
and a destination MAC address. The source MAC address is
the MAC address of the second traffic steering accelerator
132 and the destination MAC address is a MAC address of
the third service VM 144. The VLAN-ID field 348 includes
the third input VLAN ID (0x1006). The second traffic
steering accelerator 132 transmits the first data packet hav-
ing the sixth packet specification (PS6) 312 to the third
service VM 144 of the second set of service VMs 130 based
on the third input VLAN-ID (06). Since the second proces-
sor 114 executes the second, third, fourth, and fifth service
VMs 142, 144, 146, and 148, based on the input VLAN-ID
added to the first data packet, the second traffic steering
accelerator 132 determines the service VM out of the second
set of service VMs 130 that receives the first data packet
based on the input VLAN-ID. Thus, based on the input
VLAN-ID added to the first data packet, the second traffic
steering accelerator 132 precisely identifies the service VM
for processing the first data packet.

The third service VM 144 receives the first data packet
having the sixth packet specification (PS6) 312 from the
second traffic steering accelerator 132. The third service VM
144 removes the third input VLAN-ID (06) from the first
data packet having the sixth packet specification (PS6) 312,
processes the IP packet 328 with a third service function,
adds the third output VLAN-ID (07) to the first data packet,
and generates the first data packet having the seventh packet
specification (PS7) 314. The third service VM 144 transmits
the first data packet having the seventh packet specification
(PS7) 314 to the second traffic steering accelerator 132. The
first data packet having the seventh packet specification
(PS7) 314 includes a MAC header 350, the VLLAN protocol
identifier field 332, a VLAN-ID field 352, and the first data
packet field 328. The MAC header 350 includes a source
MAC address and a destination MAC address. The source
MAC address is the MAC address of the third service VM
144 and the destination MAC address is the MAC address of
the second traffic steering accelerator 132. The VLAN-ID
field 352 includes the third output VLAN ID (0x1007). The
second traffic steering accelerator 132 receives the first data
packet having the seventh packet specification (PS7) 314
and removes the third output VLAN-ID (07) from the first
data packet having the seventh packet specification (PS7)
314. The second traffic steering accelerator 132 identifies the
third record of the first chain of records based on the third
output VLAN-ID (07) and checks to determine if the first
chain of records includes another record subsequent to the
third record. On identifying the fourth record as the subse-
quent record, the second traffic steering accelerator 132
retrieves the fourth input VLAN-ID (08) of the fourth
record, adds the fourth input VLAN-ID (08) to the first data

US 9,473,396 B1

13

packet, and generates the first data packet having the eighth
packet specification (PS8) 316. Since the fourth record is
associated with the fourth service VM 146, the second traffic
steering accelerator 132 transmits the first data packet hav-
ing the eighth packet specification (PS8) 316 utilizing a
virtual port that corresponds to the fourth port number.

Thus, the first data packet having the eighth packet
specification (PS8) 316 includes a MAC header 354, the
VLAN protocol identifier field 332, a VLAN-ID field 356,
and the first data packet field 328. The MAC header 354
includes a source MAC address and a destination MAC
address. The source MAC address is the MAC address of the
second traffic steering accelerator 132 and the destination
MAC address is a MAC address of the fourth service VM
146. The VLAN-ID field 356 includes the fourth input
VLAN ID (0x1008).

The fourth service VM 146 receives the first data packet
having the eighth packet specification (PS8) 316 from the
second traffic steering accelerator 132. The fourth service
VM 146 removes the fourth input VLAN-ID (08) from the
first data packet having the eighth packet specification (PS8)
316, processes the IP packet 328 with a fourth service
function, adds the fourth output VLAN-ID (09) to the first
data packet, and generates the first data packet having the
ninth packet specification (PS9) 318. The first data packet
having the ninth packet specification (PS9) 318 includes the
fourth output VLAN-ID (09). The fourth service VM 146
transmits the first data packet having the ninth packet
specification (PS9) 318 to the second traffic steering accel-
erator 132.

Thus, the first data packet having the ninth packet speci-
fication (PS9) 318 includes a MAC header 358, the VLAN
protocol identifier field 332, a VLAN-ID field 360, and the
first data packet field 328. The MAC header 358 includes a
source MAC address and a destination MAC address. The
source MAC address is the MAC address of the fourth
service VM 146 and the destination MAC address is the
MAC address of the second traffic steering accelerator 132.
The VLAN-ID field 360 includes the fourth output VLAN
1D (0x1009).

The second traffic steering accelerator 132 receives the
first data packet having the ninth packet specification (PS9)
318 and removes the fourth output VLAN-ID (09) from the
first data packet having the ninth packet specification (PS9)
318. The second traffic steering accelerator 132 identifies the
fourth record of the first chain of records based on the fourth
output VLAN-ID (09) and checks to determine if the first
chain of records includes yet another record subsequent to
the fourth record. On determining that no more records are
included in the first chain of records, the second traffic
steering accelerator 132 generates the first data packet
having the twelfth packet specification (PSc) 324 and trans-
mits the first data packet having the twelfth packet specifi-
cation (PSc) 324 to the second application VM 150.

The first data packet having the twelfth packet specifica-
tion (PSc) 324 includes a MAC header 362 and the IP packet
328. The MAC header 362 includes a source MAC address
and a destination MAC address. The source MAC address is
the MAC address of the second traffic steering accelerator
132 and the destination MAC address is a MAC address of
the second application VM 150.

In another example, the first data packet has to be pro-
cessed with the first, second, and fifth service VMs 140, 142,
and 148. Thus, a second chain of records is generated for the
1P packet 328. The second chain of records includes the first
record, the second record, and the fifth record. Thus, when
the first application VM 138 outputs the first data packet

30

40

45

50

14

having the first packet specification (PS1) 302 to the first
traffic steering accelerator 126, the first traffic steering
accelerator 126 provides the IP packet 328 to the traffic
steering controller 108. The traffic steering controller 108
configures the second chain of records in the first traffic
steering accelerator 126. The first traffic steering accelerator
126 thus retrieves the first input VL AN-ID (02) from the first
record, adds the first input VLAN-ID (02) to the first data
packet, generates the first data packet having the second
packet specification (PS2) 302, and transmits the first data
packet having the second packet specification (PS2) 302 to
the first service VM 140. The first service VM 140 removes
the first input VLAN-ID (02) from the first data packet
having the second packet specification (PS2) 302, processes
the IP packet 328 with the first service function, adds the first
output VLAN-ID (03) to the first data packet, generates the
first data packet having the third packet specification (PS3)
304, and transmits the first data packet having the third
packet specification (PS3) 304 to the first traffic steering
accelerator 126.

The first traffic steering accelerator 126 receives the first
data packet having the third packet specification (PS3) 304,
identifies the subsequent record as the second record in the
second chain of records based on the first record, adds the
second input VLAN-ID (04) to the first data packet, gener-
ates the first data packet having a second overlay network
tunnel packet specification (OT2) (not shown), and transmits
the first data packet having the second overlay tunnel packet
specification (OT2) to the second traffic steering accelerator
132. The second traffic steering accelerator 132 receives the
first data packet having the second overlay tunnel packet
specification (OT2), transmits the IP packet 328 to the traffic
steering controller 108, receives the second chain of records
from the traffic steering controller 108, adds the second input
VLAN-ID (04) to the first data packet, generates the first
data packet having the fourth packet specification (PS4) 308,
and transmits the first data packet having the fourth packet
specification (PS4) 308 to the second service VM 142.

Thus, the first data packet having the fourth packet
specification (PS4) 308 includes a MAC header 364, the
VLAN protocol identifier field 332, a VLAN-ID field 366,
and the IP packet 328. The MAC header 364 includes a
source MAC address and a destination MAC address. The
source MAC address is the MAC address of the second
traffic steering accelerator 132 and the destination MAC
address is a MAC address of the second service VM 142.
The VLAN-ID field 366 includes the second input VLAN ID
(0x1004).

The second service VM 142 receives the first data packet
having the fourth packet specification (PS4) 308, removes
the second input VLAN-ID (04) from the first data packet
having the fourth packet specification (PS4) 308, processes
the IP packet 328 with the second service function, adds the
second output VLAN-ID (05) to the first data packet, and
generates the first data packet having the fifth packet speci-
fication (PS5) 310.

Thus, the first data packet having the fifth packet speci-
fication (PS5) 310 includes a MAC header 368, the VLAN
protocol identifier field 332, a VLAN-ID field 370, and the
IP packet 328. The MAC header 368 includes a source MAC
address and a destination MAC address. The source MAC
address is the MAC address of the second service VM 142
and the destination MAC address is the MAC address of the
second traffic steering accelerator 132. The VLAN-ID field
370 includes the second output VLAN ID (0x1005).

The second traffic steering accelerator 132 receives the
first data packet having the fifth packet specification (PS5)

US 9,473,396 B1

15

310 and removes the second output VLAN-ID (05) from the
first data packet having the fifth packet specification (PS5)
310. The second traffic steering accelerator 132 identifies the
fifth record of the second chain of records based on the
second output VLAN-ID (05). On identifying the fifth
record, the second traffic steering accelerator 132 retrieves
the fifth input VLAN-ID (0a) of the fifth record, adds the
fifth input VLAN-ID (0a) to the first data packet, and
generates the first data packet having the tenth packet
specification (PSa) 320. Since the fifth record is associated
with the fifth service VM 148, the second traffic steering
accelerator 132 transmits the first data packet having the
tenth packet specification (PSa) 320 utilizing the fifth port
number.

Thus, the first data packet having the tenth packet speci-
fication (PSa) 320 includes a MAC header 372, the VLAN
protocol identifier field 332, a VLAN-ID field 374, and the
1P packet 328. The MAC header 372 includes a source MAC
address and a destination MAC address. The source MAC
address is the MAC address of the second traffic steering
accelerator 132 and the destination MAC address is a MAC
address of the fifth service VM 148. The VLAN-ID field 374
includes the fifth input VLAN ID (0x100a).

The fifth service VM 148 receives the first data packet
having the tenth packet specification (PSa) 320, removes the
fifth input VLAN-ID (0a) from the first data packet having
the fifth packet specification (PSa) 320, processes the IP
packet 328 with a fifth service function, adds the fifth output
VLAN-ID (0b) to the first data packet, and generates the first
data packet having the eleventh packet specification (PSb)
322.

Thus, the first data packet having the eleventh packet
specification (PSb) 322 includes a MAC header 376, the
VLAN protocol identifier field 332, a VLAN-ID field 378,
and the IP packet 328. The MAC header 376 includes a
source MAC address and a destination MAC address. The
source MAC address is the MAC address of the fifth service
VM 148 and the destination MAC address is the MAC
address of the second traffic steering accelerator 132. The
VLAN-ID field 378 includes the fifth output VLAN ID
(0x100b).

The second traffic steering accelerator 132 receives the
first data packet having the eleventh packet specification
(PSb) 322 and removes the fifth output VLAN-ID (0b) from
the first data packet having the eleventh packet specification
(PSb) 322. The second traffic steering accelerator 132 iden-
tifies the fifth record of the second chain of records based on
the fifth output VLAN-ID (Ob) and checks to determine if
the second chain of records includes yet another record
subsequent to the fifth record. On determining that no more
records are included in the second chain of records, the
second traffic steering accelerator 132 generates the first data
packet having the twelfth packet specification (PSc) 324 and
transmits the first data packet having the twelfth packet
specification (PSc) 324 to the second application VM 150.

Referring now to FIG. 4, a flow chart illustrating a method
for steering the data packets in accordance with an embodi-
ment of the present invention is shown. At step 402, the
VLAN-ID assignment module 134 generates the multiple
records. At step 404, the VLAN-ID assignment module 134
associates the multiple records with the multiple service
VMs. At step 406, the service chaining module 136 receives
the multiple records. At step 408, the service chaining
module 136 generates the multiple service chaining rules
associated with the multiple n-Tuples. At step 410, the traffic
steering controller 108 receives the multiple service chain-
ing rules and the corresponding multiple records from the

10

15

20

25

30

35

40

45

50

55

60

65

16

service chaining module 136. At step 412, the traffic steering
controller 108 sequences the multiple records based on the
multiple service chaining rules and generates the multiple
chain of records. At step 414, the first processor 110 executes
the first application VM 138 of the first set of application
VMs 122 and the first service VM 140 of the first set of
service VMs 124. At step 416, the first traffic steering
accelerator 126 receives the first data packet. At step 418, the
first traffic steering accelerator 126 receives the first chain of
records corresponding to the first n-Tuple. At step 420, the
first traffic steering accelerator 126 retrieves and adds the
first input VLAN-ID of the first record of the first chain of
records with the first data packet. At step 422, the first traffic
steering accelerator 126 identifies a destination based on the
first input VLAN-ID. At step 424, the first traffic steering
accelerator 126 checks to determine whether the destination
of'the first data packet is the first service VM 140. If the first
traffic steering accelerator 126 determines that the destina-
tion of the first data packet is the first service VM 140, step
502 is executed. If at step 424, the first traffic steering
accelerator 126 determines that the destination of the first
data packet is not the first service VM 140, step 426 is
executed. At step 426, the first data packet is transmitted to
the second traffic steering accelerator 132 by way of the
overlay network tunnel 202.

Referring now to FIG. 5, a flow chart illustrating a method
of processing the first data packet by the first service VM
140 is shown. At step 502, the first service VM 140 receives
the first record from the VLAN-ID assignment module 134.
At step 504, the first service VM 140 receives the first data
packet from the first traffic steering accelerator 126. At step
506, the first service VM 140 removes the first input
VLAN-ID added to the first data packet. At step 508, the first
data packet is processed with the first service function. At
step 510, the first output VLAN-ID is added to the first data
packet. At step 512, the first data packet is transmitted to the
first traffic steering accelerator 126.

Referring now to FIG. 6, a flow chart illustrating a method
of processing the first data packet by the first traffic steering
accelerator 126 on receiving the first data packet from the
first service VM 140 is shown. At step 602, the first data
packet is received by the first traffic steering accelerator 126.
At step 604, the first traffic steering accelerator 126 removes
the first output VLAN-ID added to the first data packet. At
step 606, the first record of the first chain of records is
identified based on the first output VLAN-ID. At step 608,
the first traffic steering accelerator 126 determines if the
second record is available from the first chain of records. If
at step 608, the first traffic steering accelerator 126 deter-
mines that the second record is not available from the first
chain of records, step 610 is executed. At step 610, the first
data packet is sent to a destination application VM in the first
set of application VMs 122. However, if at step 608, the first
traffic steering accelerator 126 determines that the second
record is available from the first chain of records, step 612
is executed. At step 612, the first traffic steering accelerator
126 determines the second record of the first chain of records
subsequent to the first record. At step 614, the second input
VLAN-ID of the second record is added to the first data
packet. At step 616, the first traffic steering accelerator 126
determines if the destination of the first data packet is the
second traffic steering accelerator 132. If at step 616, the first
traffic steering accelerator 126 determines that the destina-
tion of the first data packet is the second traffic steering
accelerator 132, step 702 is executed. However, if at step
616, the first traffic steering accelerator 126 determines that
the destination of the first data packet is not the second traffic

US 9,473,396 B1

17

steering accelerator 132, step 620 is executed. At step 620,
the first data packet is sent to a service VM of the first set
of service VMs 124.

Referring now to FIG. 7, a flow chart illustrating a method
for determining a destination for the IP packet 328 based on
a second input VLAN-ID thereof by the second traffic
steering accelerator 132 in accordance with an embodiment
of the present invention is shown. At step 702, the first data
packet is received at the second traffic steering accelerator
132. At step 704, the second traffic steering accelerator 132
provides the first data packet to the traffic steering controller
108. At step 706, the first chain of records is received by the
second traffic steering accelerator 132 from the traffic steer-
ing controller 108. At step 708, the second traffic steering
accelerator 132 retrieves the second record from the first
chain of records based on the second input VLAN-ID of the
first data packet. At step 710, a destination is identified based
on the second input VLAN-ID. At step 712, the second
traffic steering accelerator 132 determines if the destination
of the first data packet is the second service VM 142. If at
step 712, the second traffic steering accelerator 132 deter-
mines that the destination of the first data packet is not the
second service VM 142, step 714 is executed. At step 714,
the first data packet is transmitted to the third traffic steering
accelerator (not shown). However, if at step 712, the second
traffic steering accelerator 132 determines that the destina-
tion of the first data packet is the second service VM 142,
step 802 is executed.

Referring now to FIG. 8, a flow chart illustrating a method
of processing the first data packet by the second service VM
142 in accordance with an embodiment of the present
invention is shown. At step 802, the second service VM 142
receives the second record from the VLAN-ID assignment
module 134. The second record includes the second input
VLAN-ID, the second output VLAN-ID, and the second
port number. At step 804, the second service VM 142
receives the first data packet from the second traffic steering
accelerator 132. At step 806, the second traffic steering
accelerator 132 removes the second input VLAN-ID added
to the first data packet. At step 808, the first data packet is
processed with the second service function. At step 810, the
second output VLAN-ID is added to the first data packet. At
step 812, the first data packet is transmitted to the second
traffic steering accelerator 132.

Referring now to FIGS. 9A and 9B, flow charts illustrat-
ing a method of determining a destination for the first data
packet by the second traffic steering accelerator 132 on
receiving the first data packet from the second service VM
142 is shown. At step 902, the first data packet is received
at the second traffic steering accelerator 132. At step 904, the
second traffic steering accelerator 132 determines if the third
record is available from the first chain of records. If at step
904, the second traffic steering accelerator 132 determines
that the third record is not available from the first chain of
records, step 906 is executed. At step 906, the first data
packet is transmitted to the second application VM 150.
However, if at step 904, the second traffic steering accel-
erator 132 determines that the third record is available from
the first chain of records, step 908 is executed. At step 908,
the second traffic steering accelerator 132 retrieves the third
record from the first chain of records based on the second
output VLAN-ID of the first data packet. At step 910, a
destination based on the third input VLAN-ID is identified
for the first data packet.

Thus, by embedding the VLAN-IDs in the data packet, the
subsequent service VM amongst the multiple service VMs
hosted by a given single compute node for the layer 2

10

15

20

25

30

35

40

45

50

55

60

65

18

transparent networks can be determined. The system 100
does not define any new network protocols in the header of
the data packets to identify the subsequent service VM in the
service chain. The system 100 also eliminates the need of
upgrading software and hardware in the compute node and
utilizes existing networking mechanisms for configuring the
VLAN-ID information. Since the records in the service
chain are ordered, the time required for determining the
subsequent service VM for processing the data packet is
less. Moreover, the traffic steering controller 108 evenly
distributes and assigns the data packets to be processed by
the multiple service VMs, thereby reducing the processing
load caused due to the transmission of the data packets in the
communication network. Since the system 100 does not use
any network ports to identify the next service VM, the
system 100 provides a scalable solution for steering data
packets. Furthermore, the system 100 provides excellent
performance characteristics and provides easy implementa-
tion in fast path accelerators for the L2 transparent networks.

While various embodiments of the present invention have
been illustrated and described, it will be clear that the
present invention is not limited to these embodiments only.
Numerous modifications, changes, variations, substitutions,
and equivalents will be apparent to those skilled in the art,
without departing from the spirit and scope of the present
invention, as described in the claims.

The invention claimed is:

1. A system for steering data packets in a communication

network, the system comprising:

a plurality of compute nodes having a corresponding
plurality of processors for executing a plurality of
application and service virtual machines (VMs) and a
corresponding plurality of traffic steering accelerators,
wherein a first compute node includes:

a first processor configured for executing a first appli-
cation VM and a first set of service VMs, wherein the
first application VM outputs a first data packet; and

a first traffic steering accelerator connected to the first
processor for receiving the first data packet;

a virtual local area network-identifier (VLAN-ID) assign-
ment module for generating a plurality of records and
associating the plurality of records with the plurality of
service VMs, wherein each record includes a VLAN-ID
set and a port number of a corresponding service VM,
and wherein the VLAN-ID set includes input and
output VLAN-IDs of the corresponding service VM;

a service-chaining module connected to the VLAN-ID
assignment module for receiving the plurality of
records and generating a plurality of service chaining
rules associated with a plurality of n-Tuples configured
for the plurality of application VMs; and

a traffic steering controller connected to the first traffic
steering accelerator for receiving the first data packet,
and to the service-chaining module for receiving the
plurality of service chaining rules and the correspond-
ing plurality of records, sequencing the plurality of
records based on the plurality of service chaining rules
for generating a plurality of chained records, and out-
putting a first chain of the chained records correspond-
ing to a first n-Tuple based on the first data packet,
wherein the first traffic steering accelerator receives the
first chain of chained records and is configured to
perform the steps of:
retrieving a first record of the first chain of chained

records;

retrieving a first input VLAN-ID of the first record;

US 9,473,396 B1

19
adding the first input VLLAN-ID to the first data packet;
and
transmitting the first data packet to at least one of a first
service VM and a second traffic steering accelerator
based on the first input VLAN-ID.

2. The system of claim 1, wherein the VLAN-ID assign-
ment module stores a mapping between a plurality of port
numbers corresponding to the plurality of service VMs, a
corresponding plurality of virtual networks, and a corre-
sponding plurality of VLAN-ID sets in a first memory.

3. The system of claim 1, wherein each n-Tuple comprises
a 5-Tuple that includes a source internet protocol (IP)
address, a destination IP address, a source port number, a
destination port number, and protocol information of a
corresponding one of the application VMs.

4. The system of claim 1, wherein the traffic steering
controller comprises an OpenFlow controller and each traffic
steering accelerator comprises an OpenFlow switch.

5. The system of claim 1, wherein the VLAN-ID assign-
ment module provides a first set of the records to the first
processor, wherein the first set of records corresponds to the
first set of service VMs.

6. The system of claim 5, wherein the first processor
further executes a network service configuration module for
configuring VLLAN interfaces of the first set of service VMs
based on the corresponding first set of records.

7. The system of claim 6, wherein the first service VM is
configured for:

receiving the first record from the VLAN-ID assignment

module, wherein the first record includes the first input
VLAN-ID, a first output VLAN-ID, and a first port

number,

receiving the first data packet from the first traffic steering
accelerator,

removing the first input VLAN-ID from the first data
packet,

processing the first data packet with a first service func-
tion,

adding the first output VLAN-ID to the first data packet,
and

transmitting the first data packet to the first traffic steering
accelerator.

8. The system of claim 7, wherein the first traffic steering
accelerator further:

removes the first output VLAN-ID added to the first data

packet,

identifies the first record of the first chain of records based

on the first output VLAN-ID,

determines a second record from the first chain of records

subsequent to the first record,

determines a second input VLAN-ID of the second

record,

adds the second input VLAN-ID to the first data packet,

and

transmits the first data packet to at least one of the first set

of service VMs and the second traffic steering accel-
erator based on the second input VLAN-ID.

9. The system of claim 8, wherein a second compute node
includes a second processor and the second traffic steering
accelerator, and wherein the second processor executes a
second application VM and a second set of service VMs.

10. The system of claim 9, wherein the second traffic
steering accelerator is configured for:

receiving the first data packet from the first traffic steering

accelerator,

providing the first data packet to the traffic steering

controller,

10

15

20

25

30

35

40

45

50

55

60

65

20

receiving the first chain of records from the traffic steering

controller,

retrieving the second record from the first chain of records

based on the second input VLAN-ID of the first data
packet, and

transmitting the first data packet to a second service VM

of the second set of service VMs based on the second
input VLAN-ID.

11. The system of claim 10, wherein the first traffic
steering accelerator transmits the first data packet to the
second traffic steering accelerator using a network overlay
protocol.

12. The system of claim 11, wherein the second service
VM is configured for:

receiving the second record from the VLAN-ID assign-

ment module, wherein the second record includes the
second input VLAN-ID, a second output VLAN-ID,
and a second port number,

receiving the first data packet from the second traffic

steering accelerator,

removing the second input VLAN-ID added to the first

data packet,

processing the first data packet with a second service

function,

adding the second output VLAN-ID to the first data

packet, and

transmitting the first data packet to the second traffic

steering accelerator.

13. The system of claim 12, wherein the second traffic
steering accelerator further receives the first data packet
from the second service VM and transmits the first data
packet to the second application VM based on the second
output VLAN-ID and the first chain of records.

14. A method for steering data packets in a communica-
tion network that includes a virtual local area network
identifier (VLAN-ID) assignment module, a service-chain-
ing module, a traffic steering controller, and a plurality of
compute nodes having a corresponding plurality of proces-
sors for executing a plurality of application and service
virtual machines (VMs) and a corresponding plurality of
traffic steering accelerators, wherein a first one of the
compute nodes includes a first processor and a first one of
the traffic steering accelerators, the method comprising:

generating a plurality of records by the VLAN-ID assign-

ment module, wherein each of the records includes a
VLAN-ID set and a port number of a corresponding
one of the service VMs, and wherein the VLAN-ID set
includes input and output VLAN-IDs of the corre-
sponding service VM

associating the plurality of records with the plurality of

service VMs;

receiving the plurality of records at the service-chaining

module;

generating a plurality of service chaining rules associated

with a plurality of n-Tuples configured for the plurality
of application VMs;
receiving the service chaining rules and the corresponding
plurality of records at the traffic steering controller;

sequencing the plurality of records based on the plurality
of service chaining rules for generating a plurality of
chained records;

executing a first one of the application VMs and a first set

of the service VMs by the first processor, wherein the
first application VM outputs a first one of the data
packets;

receiving the first data packet at the first traffic steering

accelerator;

US 9,473,396 B1

21

providing the first data packet to the traffic steering
controller;

providing a first chain of the chained records correspond-
ing to a first one of the n-Tuples based on the first data
packet to the first traffic steering accelerator;

retrieving a first record of the first chain;

retrieving a first input VLAN-ID of the first record;

adding the first input VLAN-ID to the first data packet;
and

transmitting the first data packet to at least one of a first
one of the service VMs and a second one of the traffic
steering accelerators based on the first input VLAN-ID.

15. The method of claim 14, further comprising:

receiving the first record from the VLAN-ID assignment
module at the first service VM, wherein the first record
includes the first input VLAN-ID, a first output VLAN-
1D, and a first port number;

receiving the first data packet from the first traffic steering
accelerator;

removing the first input VLAN-ID from the first data
packet;

processing the first data packet with a first service func-
tion;

adding the first output VLAN-ID to the first data packet;
and

transmitting the first data packet to the first traffic steering
accelerator.

16. The method of claim 15, further comprising:

removing the first output VLAN-ID added to the first data
packet by the first traffic steering accelerator;

identifying the first record based on the first output
VLAN-ID;

identifying a second record of the first chain;

determining a second input VLAN-ID of the second
record;

adding the second input VL AN-ID to the first data packet;
and

transmitting the first data packet to at least one of the first
set of service VMs and the second traffic steering
accelerator based on the second input VLAN-ID.

10

15

20

25

30

35

22

17. The method of claim 16, further comprising executing
a second application VM and a second set of service VMs
by a second one of the processors of a second one of the
compute nodes, wherein the second compute node includes
the second traffic steering accelerator.
18. The method of claim 17, further comprising:
receiving the first data packet from the first traffic steering
accelerator at the second traffic steering accelerator
using a network overlay protocol;
providing the first data packet to the traffic steering
controller;
receiving the first chain of the chained records from the
traffic steering controller;
retrieving the second record from the first chain based on
the second input VLAN-ID of the first data packet; and
transmitting the first data packet to the second service VM
of the second set of service VMs based on the second
input VLAN-ID.
19. The method of claim 18, further comprising:
receiving the second record at the second service VM,
wherein the second record includes the second input
VLAN-ID, a second output VLAN-ID, and a second
port number;
receiving the first data packet from the second traffic
steering accelerator;

removing the second input VLAN-ID added to the first
data packet;

processing the first data packet with a second service
function;

adding the second output VLAN-ID to the first data
packet; and

transmitting the first data packet to the second traffic
steering accelerator.

20. The method of claim 19, further comprising:

receiving the first data packet at the second traffic steering
accelerator; and

transmitting the first data packet to the second application
VM based on the second output VLLAN-ID and the first
chain of the chained records.

#* #* #* #* #*

